Code: IT3T2

II B. Tech - I Semester - Regular Examinations - December 2015

CLASSIC DATA STRUCTURES (INFORMATION TECHNOLOGY)

Duration: 3 hours Max. Marks: 70

PART - A

Answer all the questions. All questions carry equal marks

11x 2 = 22 M

- 1. a) Define Abstract data type.
 - b) Give the best and worst time complexity of Quick sort.
 - c) How do we represent sparse matrices?
 - d) List the drawbacks of linked list.
 - e) What are the differences between stack and queue?
 - f) List the applications of stack.
 - g) Differentiate linear data structures and nonlinear data structures.
 - h) What is complete binary tree?
 - i) What is the height of a leaf node in a binary tree?
 - j) How many nodes could be there in a n- level binary tree?
 - k) Define a graph.

PART - B

Answer any *THREE* questions. All questions carry equal marks. $3 \times 16 = 48 \text{ M}$

2. a) Sort the following elements using Radix sort. 23, 543, 67, 39, 8, 46, 877, 5, 10, 100.	8 M
b) Explain briefly about Recursive algorithms.	8 M
3. a) Define double linked list. Explain its operation	1s. 8 M
b) Write an algorithm for operations for circular l	linked list. 8 M
4. a) Write a program to evaluate postfix expression	1. 8 M
b) Explain queue and its operations.	8 M
5. a) Mention the properties of binary trees.	8 M
b) Explain search strategies in a Binary search tre	ee. 8 M
6. a) Explain Elementary Graph operations.	8 M
b) Explain Breadth first search and Depth First se	earch with an

8 M

example.